研究者情報
ササキ ヒロアキ
SASAKI Hiroaki
佐々木 博昭
所属
明治学院大学 情報数理学部 情報数理学科
職種
教授
著書・論文歴
著書
データサイエンスと機械学習: 理論からPythonによる実装まで (共著) 2022/12
論文
Identifiability of a statistical model with two latent vectors: Importance of the dimensionality relation and application to graph embedding arXiv,1-21頁 (単著) 2024/05
論文
Outlier-robust parameter estimation for unnormalized statistical models Japanese Journal of Statistics and Data Science 7 (1),223-252頁 (共著) 2024/02/06
論文
Graph embedding with outlier-robust ratio estimation IEICE on Transactions on Information and Systems (共著) 2022/10
論文
Representation learning for maximization of MI, nonlinear ICA and nonlinear subspaces with robust density ratio estimation Journal of Machine Learning Research (共著) 2022/08
論文
Mode estimation on matrix manifolds: Convergence and robustness. International Conference on Artificial Intelligence and Statistics (AISTATS),8056-8079頁 (共著) 2022/03
論文
Robust contrastive learning and nonlinear ICA in the presence of outliers. Conference on Uncertainty in Artificial Intelligence (UAI),659-668頁 (共著) 2020/08
論文
Robust modal regression with direct gradient approximation of modal regression risk. Conference on Uncertainty in Artificial Intelligence (UAI),,380-389頁 (単著) 2020/08
論文
Direct Log-Density Gradient Estimation with Gaussian Mixture Models and Its Application to Clustering. IEICE Trans. Inf. Syst. 102-D (6),1154-1162頁 (共著) 2019/06
論文
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning. International Conference on Artificial Intelligence and Statistics (AISTATS),859-868頁 (共著) 2019/04
論文
Neural-Kernelized Conditional Density Estimation. CoRR abs/1806.01754 (共著) 2018/06
論文
Mode-Seeking Clustering and Density Ridge Estimation via Direct Estimation of Density-Derivative-Ratios Journal of Machine Learning Research (共著) 2018/04
論文
Sufficient Dimension Reduction via Direct Estimation of the Gradients of Logarithmic Conditional Densities Neural Computation (共著) 2018/02
論文
Simultaneous Estimation of Non-Gaussian Components and their Correlation Structure Neural Computation (共著) 2017/11
論文
Whitening-Free Least-Squares Non-Gaussian Component Analysis. Asian Conference on Machine learning (ACML),375-390頁 (共著) 2017/11
論文
Direct Estimation of the Derivative of Quadratic Mutual Information with Application in Supervised Dimension Reduction. Neural Comput. 29 (8),2076-2122頁 (共著) 2017/08
論文
Estimating Density Ridges by Direct Estimation of Density-Derivative-Ratios Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) (共著) 2017/04
論文
Least-Squares Log-Density Gradient Clustering for Riemannian Manifolds. International Conference on Artificial Intelligence and Statistics (AISTATS),537-546頁 (共著) 2017/04
論文
Modal Regression via Direct Log-Density Derivative Estimation Proceedings of the 23rd International Conference on Neural Information Processing (ICONIP) (共著) 2016/10
論文
Regularized Multitask Learning for Multidimensional Log-Density Gradient Estimation. Neural Computation 28 (7),1388-1410頁 (共著) 2016/07
論文
Direct Density Derivative Estimation Neural Computation (共著) 2016/06
論文
Non-Gaussian Component Analysis with Log-Density Gradient Estimation Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS) (共著) 2016/05
論文
Sufficient Dimension Reduction via Direct Estimation of the Gradients of Logarithmic Conditional Densities. Asian Conference on Machine learning (ACML),33-48頁 (共著) 2015/11
論文
Direct Density-Derivative Estimation and Its Application in KL-Divergence Approximation. International Conference on Artificial Intelligence and Statistics (AISTATS) (共著) 2015/05
論文
Clustering via Mode Seeking by Direct Estimation of the Gradient of a Log-Density. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD),,19-34頁 (共著) 2014/09
論文
Estimating Dependency Structures for non-Gaussian Components with Linear and Energy Correlations. International Conference on Artificial Intelligence and Statistics (AISTATS),868-876頁 (共著) 2014/04
論文
Correlated topographic analysis: estimating an ordering of correlated components. Machine Learning 92 (2-3),285-317頁 (共著) 2013/05
論文
Topographic Analysis of Correlated Components. Asian Conference on Machine learning (ACML),365-378頁 (共著) 2012/11
論文
Learning Topographic Representations for Linearly Correlated Components Workshop on Deep Learning and Unsupervised Feature Learning at NeurIPS 2011, Online Proceedings (共著) 2011/12
論文
Kalman filter model can explain the temporal receptive field of motion selective V1 neurons NEUROSCIENCE RESEARCH 68,E379-E380頁 (共著) 2010/12
論文
Efficient Representation by Horizontal Connection in Primary Visual Cortex. International Conference on Neural Information Processing (ICONIP),132-139頁 (共著) 2010/11
論文
Neural implementation of coarse-to-fine processing in V1 simple neurons. Neurocomputing 73 (4-6),867-873頁 (共著) 2010/01
論文
Super resolution: Another computational role of short-range horizontal connection in the primary visual cortex. Neural Networks 22 (4),362-372頁 (共著) 2009/05